US ERA ARCHIVE DOCUMENT

Development of a Quantitative Accounting Framework for Black Carbon and Brown Carbon from Emissions Inventory to Impacts

Jamie Schauer, UW-Madison (PI)
Mike Bergin, Georgia Teach (Co-PI)
Collaborator: Jerry Liu, Cummins

Motivation

- Emissions inventories and air quality models of light adsorbing carbon require parameterization of the radiative properties of emissions
- Current parameterizations of light absorbing carbon emissions do not address the range of variability within sources or control technologies
- Elemental carbon is not a good surrogate for light absorbing carbon for control strategy development nor assessment of control strategy implementation
 - May be OK if limited to absorption at 880 nm
- The light absorbing capacity of carbonaceous aerosol is not a conservative property from the point of emissions to atmosphere

Project Goals

Overall Goal

 Development of a quantitative framework for sourcereceptor relationships for light absorbing carbon and their associated wavelength dependent light absorptivity

Key Objectives

- Deconstruct emissions from sources of light absorbing carbon to elucidate the contribution of different emissions components to wavelength dependent absorption
- Elucidate how the evolution of emissions in plumes impact wavelength dependent absorption
- Integrate source apportionment models for aerosol components impacting light adsorption with wavelength dependent light absorption closure calculations

Project Strategy

- Source Testing
- Mie theory calculations for source emissions and deconstructed emissions
- Atmospheric measurements
- Mie theory calculations for atmospheric aerosols and deconstructed aerosols
- Develop a source apportionment framework that can address the optical evolution of aerosols and precursors

Source Testing

- Examine key sources of light absorbing carbon:
 - Mobile sources
 - Conventional CI and SI and Emerging Technologies
 - Biomass burning
 - Lab and Field Studies
 - Coal combustion
- Examine for each source
 - Role of process variables on emissions
 - Optical properties of the organic carbon
 - Optical properties of the elemental carbon
 - Impact of dilution
 - Impact of thermal stripping of organics
- Develop source specific light absorption closure models for measurement conditions and high dilution conditions

Atmospheric Measurements

- Use sites where we have conducted source apportionment studies in the past and where historical record and optical measurements
 - Atlanta, Georgia
 - Near Roadway
 - Rural Alabama
 - SOA
 - India
 - Biomass and Trash Burning
 - Low Temperature Coal Combustion

Approach

- Measure the optical properties under controlled conditions
 - Scattering and Absorption (multiple wavelengths)
- Measure physical-chemical properties
 - Size distribution, particle shape, chemical composition
- Segregate components of aerosols
 - Thermal Denuder, WS and Organic solvent atomization
- Correct absorption artifacts and compare optical properties of aerosol components

Methods

Magee Scientific AE31 7-channel Aethalometer

TSI Scanning Mobility Particle Sizer/ Electrostatic classifier

DMT PAX 532: Photoacoustic Extictionometer

Framework for Black Carbon and Brown Carbon from Emissions to Impacts EPA STAR Grant R83503901

Methods

Framework for Black Carbon and Brown Carbon from Emissions to Impacts EPA STAR Grant R83503901

Attenuation by Non-Absorbing Aerosols

Absorption vs Scattering: Scattering Artifact correction

				slope forced through	
Wavelengths	slope (m)	Intercept (b)	R^2	zero (m')	
370	0.064	3.977	0.801747	0.066	
470	0.049	-0.909	0.816126	0.048	
520	0.038	1.983	0.835205	0.039	
590	0.030	2.919	0.801001	0.032	
660	0.027	3.207	0.84761	0.028	
880	0.016	7.607	0.685092	0.019	
950	0.013	7.410	0.651662	0.016	

Multiple Wavelength Absorption Correction

- Test run at steady-state
- Scattering correction is not significant for engine out emissions
- Loading correction is wavelength specific

Example of Wood Pellets

Framework for Black Carbon and Brown Carbon from Emissions to Impacts EPA STAR Grant R83503901

Experimental Setup

Model	2010, Cummins ISX15 – 500	
Emission Certification	EPA 2010, CARB 2010	
Туре	4-stroke cycle	
Cylinder Configuration	In-line 6	
Bore and Stroke	137 mm x 169 mm	
Compression Ratio	17.2:1	
Aspiration	Turbocharged & Charge Air	
	Cooled	
Displacement	14.9 L	
Rated Power & Rated Speed	373 kW & 1800 RPM	
Peak Torque	2508 N-m at 1200 RPM	
Fuel System	Cummins XPI	
EGR System	Cooled High Pressure	

Emissions Testing Lab

BrC Plots

Atmospheric Sampling: Objectives

- Conduct field measurements at a variety of sites dominated by various sources of Black Carbon (BC) and Brown Carbon (BrC)
- Determine relative fraction of light absorption by BC and BrC
- Determine sources of BC and BrC
- Develop simple parameterizations for influence of aging on the light absorbing properties of aerosols

Approach: Specifics

Parameter	Instrument	Dates	Objective
Real-Time			•
Continuous			
σ _{ap} (λ)	Magee Aethalometer, PAX	4-1 Month Periods	Compare with Mie Theory Light Absorption Estimates from MOUDI 1
$\sigma_{\sf sp}$ (λ)	Radiance Research Nephelometer		Compare with Mie Theory Estimates from MOUD
Time-Integrated Sampling			
EC/OC, Trace Organics, WSOC, Abs $(\lambda)_{solvent}$, Abs $(\lambda)_{water}$	HiVol Filter sampler	4-1 Month Periods	Source apportionment, RI Estimates for Mie Theory, Solvents Extracts for Aerosolization Experiments
EC/OC, WSOC, Abs $(\lambda)_{solvent}$, Abs $(\lambda)_{water}$	MOUDI 1	4-1 Month Periods	Estimation of σ_{ap} (λ) as function of size for both water and solvent extracts and BC
Mass, Ions	MOUDI 2	4-1 Month Periods	Estimation of σ_{sp} (λ) as a function of size

Black Carbon (BC) and Angstrom Absorption Exponent (AAE) in rural US and India

Trash/Refuse Burning: A Source of Brown Carbon

Ratio of light absorption for denuder (200°C) to ambient air

Ratio of light absorption for denuder (200°C) to ambient air

Low Cost Sensor Networks

microAet h-Black Carbon Arduinomicrocontroler

PM sensor

CO₂ Sensor

T, RH

npacts

Framework for Blac

EPA STAR Grant R83503901

Atlanta Freeway PM Emission Factor Estimate

Rush Hour Event

Rough Emissions Factor = $\Delta PM/\Delta CO2$ = 0.079µg m⁻³ PM/ppmCO2 = 0.39 g PM/kg fuel

Atlanta Freeway BC Emission Factor Estimate

Rough Emissions Factor = $\Delta BC/\Delta CO2$ = 0.044 µg m⁻³ BC/ppmCO2 = 75 mg BC/kg fuel

Ongoing Efforts

- Source Testing
 - Appling methodology to other source of concern: real world biomass, residential coal
- Atmospheric Sampling
 - Water and methanol extractions of size-resolved
 BC and BrC samples
 - Extraction of hivol samples to determine optical properties and sources of light absorption
- Publications

